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We analyze confining mechanisms for Lévy flights. When they evolve in suitable external potentials their
variance may exist and show signatures of a superdiffusive transport. Two classes of stochastic jump-type
processes are considered: those driven by Langevin equation with Lévy noise and those, named topological
Lévy processes �occurring in systems with topological complexity such as folded polymers or complex net-
works�, whose Langevin representation is unknown and possibly nonexistent. Our major finding is that both
above classes of processes stay in affinity and may share common stationary probability density, even if their
detailed dynamical behavior look different. This near-equilibrium observation seems to be generic to a broad
class of Lévy noise-driven processes, such as e.g., superdiffusion on folded polymers, geophysical flows, and
even climatic changes.
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I. INTRODUCTION

The study of random walks in complex structures is a key
point to understanding of properties of many physical and
nonphysical systems, ranging from transport in disordered
media �1� to transfer phenomena in biological cells and vari-
ous real-world networks �2,3�. It is well-known that a mean-
square displacement of a freely diffusing particle depends on
time linearly �X2�t��� t. If a diffusion is anomalous, then
�X2�t��� t�, where ��1, 0����. If ��1, the dynamics is
called subdiffusive otherwise superdiffusive. A superdiffusive
motion of a particle may be generated by means of non-
Gaussian jump-type processes.

At this point one often invokes Lévy flights. Their free
version may seem somewhat exotic since their second mo-
ments are nonexistent. However, Lévy flights in confining
external potentials show up less exotic behavior and do ad-
mit the existence of first few moments �see, e.g., Ref. �4��.
Thus they may be employed to analyze methods of taming of
a superdiffusive transport.

Lévy flights, being non-Gaussian jump-type processes,
quite apart from serious technical difficulties and a shortage
of analytically tractable examples, occur in many fields of
modern statistical physics and have won major attention in
the last two decades �4–21�. Most of the current research is
devoted to Langevin equation based derivations, where a de-
terministic force is perturbed by the noise of interest
�13–20�. However, in a number of publications, another class
of jump-type processes was introduced under the name of
topologically induced superdiffusions �6–9�. The origin of
this name is due to the fact that such processes occur prima-
rily in the systems with topological complexity like folded
polymers or complex networks. An observation of �7� was
that topological superdiffusion processes do not portray a

situation equivalent to any of standard fractional Fokker-
Planck equations and seem not to correspond to any Lange-
vin equation. On the other hand, in the discussion of above
topological Lévy processes main emphasis has been put on
their superdiffusive behavior with some neglect of confining
effects and the resultant emergence of non-Gibbsian station-
ary probability densities �6–9�.

We address the latter issue and set general confinement
criteria for an analytically tractable case of Cauchy noise-
driven processes. The results obtained appear to be more
general and not specific to Cauchy noise. To this end, some
ideas have been adopted from the general theory of
diffusion-type stochastic processes where an asymptotic ap-
proach toward equilibrium �stationary probability density
function �pdf�� is one of major topics of interest �22�.

To handle topological Lévy processes we use a conve-
nient and general mathematical tool, named Schrödinger �or
Lévy-Schrödinger for non-Gaussian processes� semigroup.
This tool naturally appears if one attempts to transform the
evolution equation for the pdf � of a certain stochastic pro-
cess �e.g., standard or fractional Fokker-Planck equation�,
into the time-dependent Schrödinger-type equation �the para-
bolic one in the Gaussian context; there is no imaginary unit
before time derivative� �t�=H�. Here, H receives a natural
interpretation of a Hamiltonian operator, −H stands for a
semigroup generator. A proper exploitation of a semigroup
operator exp�−tH� allows not only to generate the evolution
equation for the pdf �differential or pseudodifferential in case
of non-Gaussian Lévy noise, see below� but gives access to
hitherto unexploited evolution scenarios which are not cap-
tured by the standard Langevin modeling.

We shall demonstrate that topologically induced processes
of Refs. �6–9�. form a subclass of its solutions with a prop-
erly tailored dynamical semigroup and its �Feynman-Kac�
potential �5,11�. That allows to take advantage of the existing
mathematical theory of Lévy processes and Lévy-
Schrödinger semigroups �14,15�, and �5,11,12�, where free
Lévy noise generators are additively perturbed by suitable
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confining potentials. The theory works well for both Gauss-
ian and non-Gaussian processes.

We note here, that in the Brownian case, the Schrödinger
problem incorporates the well-known transformation of a
Fokker-Planck equation into a generalized diffusion equation
�10�, e.g., a transition to the Hermitian �strictly speaking,
self-adjoint� problem whose eigenfunction expansions yield
transition pdfs of the pertinent process.

In this paper, we consider an impact of external confining
potentials upon Lévy flights. The flights may be influenced
directly or indirectly �here via conservative forces� leading to
inequivalent Lévy processes. An indirect influence refers to
Langevin modeling, while a direct one refers to Lévy semi-
groups. While making this specific distinction between the
two ways of response of Lévy noise to external potentials,
we address an issue of an apparent incompatibility between
them, raised earlier �7�. The results obtained set a bridge
between these seemingly different classes and may shed
some light on the emergence of varied types of a superdiffu-
sive dynamics in complex structures, especially those involv-
ing significant spatial inhomogeneities.

II. THEORETICAL FRAMEWORK

A. Smoluchowski processes and Schrödinger semigroups

To make paper self-contained, here we recapitulate the
main derivations, which will be necessary for us in subse-
quent discussion. We begin with consideration of a one-
dimensional �1D� Smoluchowski diffusion process �10�, with
the Langevin representation ẋ=b�x , t�+A�t�, where �A�s��
=0, �A�s�A�s���=2D��s−s��. Here, b�x , t� is a forward drift
of the process, admitted to be time dependent, unless we
ultimately pass to Smoluchowski diffusion processes where
b�x , t��b�x� for all times.

If an initial pdf �0�x� is given, then the diffusion process
drives it in accordance with the Fokker-Planck equation �t�
=D	�−��b�� �in the 1D case ��� /�x, 	��2 /�x2�. We
define an osmotic velocity field u=D� ln �, together with
the current velocity field v=b−u. The latter obeys the con-
tinuity equation �t�=−�j, where j=v ·� has a standard inter-
pretation of a probability current. The time-independent
drifts b�x� of the diffusion processes are induced by external
�conservative, Newtonian� force fields f =−�V. One arrives
at Smoluchowski diffusion processes by setting

b =
f

m

= −

1

m

� V . �1�

Here, m is a mass and 
 is a reciprocal relaxation time of a
system. The expression �1� accounts for a fully fledged
phase-space derivation of the spatial process, in the regime
of large 
. It is taken for granted that the fluctuation-
dissipation balance gives rise to the standard form D
=kBT /m
 of the diffusion coefficient D �T stands for a tem-
perature and kB is Boltzmann constant�.

Let us consider a stationary asymptotic regime, where j
→ j�=0. We denote an �a priori assumed to exist �22��, in-
variant pdf ��=���x�. Since in stationary case v=v�=0, we
have

b� = u� = D � ln ��. �2�

Since b= f /m
 does not depend on pdf explicitly, b=b� and
���x�= �1 /Z�exp�−V�x� /kBT�. It is seen that our outcome has
Gibbs-Boltzmann form with Z being a partition function, Z
=�exp�−V /kBT�dx.

Denoting F��−kBT ln Z, we have

���x� = exp	�F� − V�x��/kBT
 � exp�2��x�� . �3�

Here, to comply with the notations of Ref. �5� and with sub-
sequent discussion of a topological generalization of the
Brownian motion and then Lévy flights �6–9�, we have de-
fined a potential function � such that ��

1/2=exp��� and b
=2D��.

Following a standard procedure �10� we transform the
Fokker-Planck equation into an associated Hermitian prob-
lem by means of redefinition ��x , t�=���x , t�exp���x��, that
takes the Fokker-Plack equation into a parabolic one �10�
�t��=D	��−V��. Its potential V derives from a compatibil-
ity condition V�x�= �1 /2��b2 / �2D�+�b�.

Smoluchowski process with a unique asymptotic Gibbsian
pdf implies

V = D
	��

1/2

��
1/2 . �4�

This equation is a trivialized version �due to the time inde-
pendence of its solution� of the time adjoint equation �t�
=−D	�+V�, see Refs. �5,11� setting �=��

1/2.
Introducing �1 /2mD rescaled� Schrödinger-type Hamil-

tonian H=−D	+V, one arrives at a dynamical �Schrödinger�
semigroup operator exp�−tH�, with the dynamical rule
���t�= �exp�−tH�����0�, taking forward the initial data
���x ,0�.

For completeness of discussion, we note that the time
adjoint equation, if applicable, would come out from the re-
verse time evolution taking a given final �terminal� ��x , tfin�
backward in time to ��x , tfin− t�= �exp�−tH����tfin�, all mo-
tions being confined to an interval �0, tfin�.

B. Lévy-Schrödinger semigroups

Before passing to an analysis of Lévy flights, let us set
general rules of the game with respect to the response to
external potentials, once a free noise is chosen. We recall that
a characteristic function of a random variable X completely
determines a probability distribution of that variable. If this
distribution admits a pdf ��x�, we can write �exp�ipX��
=�R��x�exp�ipx�dx which, for infinitely divisible probability
laws, gives rise to the famous Lévy-Khintchine formula �see,
e.g., �14��

�exp�ipX�� = exp�ip − ��2/2�p2 + �
−�

+� exp�ipy� − 1

−
ipy

1 + y2���dy�� , �5�

where ��dy� stands for so-called Lévy measure. By disre-
garding the deterministic and jump-type contributions in the
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above, we are left with �exp�ipx��=exp�−�2p2 /2�, hence
��x�= �2��2�−1/2exp�−x2 /2�2�.

In terms of the random variable Xt= �2D�1/2At of the
Wiener process, we have �exp�ipXt��=exp�−tDp2�. By em-
ploying p→ p̂=−i� we identify the semigroup operator
exp�tD	�, with 	=d2 /dx2. This involves a special version
H=Dp̂2=−D	 of the general Hamiltonian H=F�p̂�.

From now on, we concentrate on the integral part of the
Lévy-Khintchine formula, which is responsible for arbitrary
stochastic jump features. By disregarding the deterministic
and Brownian motion entries we arrive at

F�p� = − �
−�

+� exp�ipy� − 1 −
ipy

1 + y2���dy� , �6�

where ��dy� stands for the appropriate Lévy measure. The
corresponding non-Gaussian Markov process is character-
ized by �exp�ipXt��=exp�−tF�p�� and yields an operator
F�p̂�=H, with p̂=−i�.

For the sake of clarity we restrict further considerations to
non-Gaussian random variables whose pdf’s are centered and
symmetric, e.g., a subclass of stable distributions character-
ized by

F�p� = ��p�� ⇒ H � ��	��/2. �7�

Here ��2 and ��0 stands for the intensity parameter of
the Lévy process. The fractional Hamiltonian H, which is a
nonlocal pseudodifferential operator, by construction is posi-
tive and self-adjoint on a properly tailored domain. A suffi-
cient and necessary condition for both these properties to
hold true is that the pdf of the Lévy process is symmetric
�14�.

The associated jump-type dynamics is interpreted in terms
of Lévy flights. In particular

F�p� = ��p� → H = F�p̂� = ���� � ��− 	�1/2 �8�

refers to the Cauchy process, see e.g., �5,11,12�. The
pseudodifferential Fokker-Planck equation, which corre-
sponds to the fractional Hamiltonian Eq. �8� and the frac-

tional semigroup exp�−tĤ��=exp�−��	��/2�, reads

�t� = − ��	��/2� , �9�

to be compared with the conventional heat equation �t�
=D	�.

For a pseudodifferential operator �	��/2, the action on a
function from its domain is greatly simplified �as compared
to Lévy-Khintchine formula �6��, in view of the properties of
the Lévy measure ���dx�. We have �5,7,11,13,20�

��	��/2f��x� = − �
−�

�

�f�x + y� − f�x�����dy� . �10�

The Cauchy-Lévy measure, associated with the Cauchy
semigroup generator �	�1/2����, reads

�1/2�dy� =
1

�

dy

y2 . �11�

The substitution y→z=x+y permits to reduce the Eq. �10� to
the familiar form

����f��x� = −
1

�
�

−�

� f�z� − f�x�
�z − x�2

dz , �12�

where 1 /��z−x�2 has an interpretation of an intensity with
which jumps of the size �z−x� occur.

III. RESPONSE TO EXTERNAL POTENTIALS:
STATIONARY DENSITIES

A. Langevin modeling

The pseudodifferential Fokker-Planck equation, which
corresponds to the fractional Hamiltonian Eq. �7� and the
fractional semigroup exp�−tH��=exp�−t��	��/2�, has the
form �9�, to be compared with the Fokker-Planck equation
for freely diffusing particle �or above heat transfer equation�
�t�=D	�.

In case of jump-type �Lévy� processes a response to ex-
ternal perturbations by conservative force fields appears to be
particularly interesting. On one hand, one encounters a
widely accepted reasoning �Refs. �17–20�� where the Lange-
vin equation, with additive deterministic and Lévy noise
terms, is found to imply a fractional Fokker-Planck equation,
whose form faithfully parallels the Brownian version, e.g.,
�cf. Ref. �17�, see also �12��

ẋ = b�x� + A��t� ⇒ �t� = − ��b�� − ��	��/2� . �13�

Here we make a remark regarding our notations. In 1D case
operator � means simply differentiation over x �see also
above� so that all quantities such as f are scalars. In higher
dimensions the operator �, acting on vector quantity b� ·��b�
�−�� V /m
� should be understood as a vector divergence,
i.e., the term �� �b� ·���div�b� ·��. Also, here we emphasize a
difference in sign in the second term of Eq. �13� as compared
to that in Eq. �4� of Ref. �17�. There, the minus sign is ab-
sorbed in the adopted definition of the �Riesz� fractional de-
rivative. Apart from the formal resemblance of operator sym-
bols, we do not directly employ fractional derivatives in our
formalism.

B. Topological route

The other approach to account for external perturbations
is that, by mimicking the above Gaussian strategy, we can
directly refer to the Hamiltonian framework and dynamical
semigroups with Lévy generators being additively perturbed
by a suitable potential. For example, assuming that the func-
tional form of V�x� guarantees that H����	��/2+V is self-
adjoint and bounded from below, we may pass to the frac-
tional �non-Gaussian, jump process� analog of the
generalized diffusion equation:

�t�� = − ��	��/2�� − V��. �14�

The dynamical semigroup reads exp�−tH�� and the compat-
ibility condition related to Eq. �4�, takes the form of the time
adjoint equation �t�=��	��/2�+V� �16�. General theory
�5,11,16� tells us that ���x , t���x , t�=��x , t� stands for a pdf
of an affiliated Markov process that interpolates between the
boundary data ��x ,0� and ��x , tfin�, at times t� �0, tfin�.
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We consider time-independent ��x , t����x� and hereby
mimic the Gaussian ansatz: ��x�=exp���x�� so that ���x , t�
=��x , t�exp�−��x��. If we set exp���x��=��

1/2�x�, we get the
compatibility condition �see Eq. �4��:

V = − �
�	��/2��

1/2

��
1/2 . �15�

This identity should be compared with Eq. �8� in Ref. �8�,
where an analogous effective potential was deduced in the
study of Lévy flights in inhomogeneous media.

In view of the semigroup dynamics, we deduce a conti-
nuity equation with an explicit fractional input

�t� = ��t�
� = − ��exp ���	��/2�exp�− ���� + V · � .

�16�

Up to cosmetic changes �→−V /2kBT �compare with Eq.
�3��, Eq. �16� is identical with transport equations employed
in a number of papers. There, the investigated process was
named a topologically induced superdiffusion. Namely, with
respect to explicit form of Eq. �15�, the Eq. �16� assumes a
familiar form of the transport equation �with respect to �
=1 and �=1 / �kBT��, see Eq. �6� in Ref. �8�, Eq. �5� in Ref.
�9�, and Eq. �36� in Ref. �6�.

�t� = − exp�− �V/2��	��/2exp��V/2��

+ � exp��V/2��	��/2exp�− �V/2� , �17�

We note a systematic sign difference between our �	��/2 and
the corresponding fractional derivative 	�/2 of Refs. �6,8,9�.

C. A discord and the reverse engineering problem

The puzzling point is that for the Lévy process in external
force fields, the Langevin approach yields a continuity �e.g.,
fractional Fokker-Planck� equation in a very different form

�t� = − ��−
�V

m

�� − ��	��/2� . �18�

The conclusion of Refs. �6–9� was that, while assuming �
�V where V is �up to inessential factors� the above external
force potential, the two transport Eqs. �16� and �18� are
plainly incompatible so that Eq. �16� seems not correspond
to any Langevin equation with Lévy noise term and b
=−�V /m
 as a deterministic part and vice versa. This puz-
zling discrepancy has not been explored previously in more
depth.

The problem we address is as follows:
�i� choose a functional form of V�x� and thus the drift of

the Langevin-type process;
�ii� infer an invariant pdf �� that is compatible with the

fractional Fokker-Planck Eq. �18�;
�iii� given ��, deduce the Feynman-Kac �e.g., dynamical

semigroup� potential V by means of Eq. �15�;
�iv� use V in Eq. �16� and verify whether the “topologi-

cally induced dynamics” is at all related to that associated
with Eq. �18� �and thus to the underlying Langevin equation
with Lévy noise�;

�v� check an asymptotic behavior of ��x , t� in both sce-
narios Eqs. �16� and Eq. �18� to find possible differences in

the speed �convergence time rate� with which the common
invariant pdf ���x� from item �ii� is approached;

�vi� repeat the procedure in reverse order by starting from
step �iii� and then deduce the drift for the Langevin equation
with Lévy noise; next compare the dynamical scenarios Eqs.
�16� and �18� for any common initial pdf.

We recall that the above problem is nonexistent in the
case of Brownian motion. There, the Fokker-Planck dynam-
ics and the related parabolic equations do refer to the same
diffusion-type process.

We shall demonstrate below that both Langevin-driven
and semigroup-driven Cauchy processes, albeit noncoincid-
ing literally, keep resemblance to each other and may share
common for both stationary pdf. A possible superdiffusive
dynamical behavior is tamed to the extent that an asymptotic
approach toward a stationary pdf is possible. This motivates
the “targeted stochasticity” discussion whose original formu-
lation �in terms of the reverse engineering problem� for
Langevin-driven Lévy systems can be found in Ref. �23�.
The original formulation of the reverse engineering problem
reads: given a stationary pdf, can we tailor a drift function so
that the system Langevin dynamics would admit the pre-
defined as an asymptotic target?

We employ the reverse engineering problem to analyze
Cauchy processes in confining potentials. In the course of the
discussion, we in fact extend its range of applicability �that
applies to more general stable processes as well� and dem-
onstrate that a priori chosen stationary pdf may serve as a
target density for both Langevin and semigroup-driven
Cauchy processes. Even though their detailed dynamical pat-
terns of behavior are different. In the near-equilibrium re-
gime this dynamical distinction becomes immaterial.

IV. CAUCHY DRIVER

In view of serious technical difficulties we shall not at-
tempt to present a fully fledged solution to the above formu-
lated problem for any symmetric stable jump-type process
and any conceivable drift. Instead, we turn our attention to
situations where explicit functional forms of invariant densi-
ties are available. Most of them were inferred in the prob-
lems, related to Cauchy noise, see Refs. �5,12,17–20�. In
particular, attention has been paid to confining properties of
various drifts upon the Cauchy noise. On the other hand,
Lévy flights through a “potential landscape” �topological
processes of Refs. �6–9�� were interpreted as �enhanced� su-
perdiffusions.

A. Ornstein-Uhlenbeck-Cauchy process

Let us consider the Ornstein-Uhlenbeck-Cauchy �OUC�
process, whose drift is given by b�x�=−�x, and an
asymptotic invariant pdf associated with the Cauchy-Fokker-
Planck equation �t�=−�����+����x��� reads

���x� =
�

�

1

�2 + x2 , � =
�

�
, �19�

cf. Eq. �9� in Ref. �12�. Here, the modified noise intensity
parameter � is a ratio of an intensity parameter � of the
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Cauchy noise and of the friction coefficient �. Note that a
characteristic function of this pdf reads F�p�=−��p� and ac-
counts for a nonthermal fluctuation-dissipation balance.

For Cauchy random variable Xt we have �exp�ipXt��
=exp�−t��p��. The corresponding pdf has the form �19� with
�� t�, e.g., ��x , t�=�t /����t�2+x2�. Here, � and t� play a
role of scaling parameters specifying the half width of the
Cauchy pdf at its half maximum. Since t� grows monotoni-
cally, the free Cauchy noise pdf flattens and its maximum
drops down in time.

Since �=� /�, the confining drift −�x may stop the “flat-
tening” of the probability distribution and stabilize the pdf at
quite arbitrary shape �with respect to its maximum and half
width, see above�, by manipulating �. For example, ��1
implies a significant shrinking of the distribution �� as com-
pared to the reference �free noise� pdf at any time t�1 /�. In
parallel, a maximum pdf value would increase: 1 /��
→� /��.

The OUC case refers to Cauchy flights in a confining
�harmonic� potential, but does not imply the confined flight,
since the variance of the asymptotic density diverges. We
note that confined Lévy flights and specifically confined
Cauchy flights, have been analyzed earlier in Refs. �19,20�.

To deduce the potential V for the OUC process with given
invariant pdf ��, we need to evaluate the right-hand side of
the defining Eq. �15�, with �=1. We employ Eq. �12�, so
arriving at

�

�

1

��2 + x2�1/2V�x� = �
−�

�  1
��2 + �x + y�2

−
1

��2 + x2�dy

y2 .

�20�

Because of the integrand singularity at y=0, we must handle
the integral in terms of its principal value. Presenting the
notation a=�2+x2, we arrive at �24�

V�x� =
�

�
−

2
�a

+
x

a
ln

�a + x
�a − x

� . �21�

Here, V�x� is bounded both from below and above, with the
asymptotics �2 / �x��ln�x� at infinities, well fitting to the gen-
eral mathematical construction of �topological� Cauchy pro-
cesses in external potentials, see Ref. �11� for details. The
plot of potential Eq. �21� is reported in Fig. 1.

Accordingly, we know for sure that there exists a topo-
logical Cauchy process with the Feyman-Kac potential V,
Eq. �21�, whose invariant density coincides with that for the
Langevin-supported OUC process.

B. Confined Cauchy processes: Langevin and topological
targeting

To analyze a time-dependent behavior of both topological
and Langevin-driven process, below we consider specific
numerical example, admitting finite variance �X2�t��. This
time-dependent variance permits to analyze a particular sce-
nario of approaching the invariant �equilibrium� density in
the large time regime. We will see that two considered jump-
type processes, whose time evolution is embodied respec-
tively in the fractional Fokker-Planck equation and in Lévy-

Schrödinger semigroup �topological case� dynamics are
definitely alike as they share a common invariant density. In
the near-equilibrium regime, any dynamical distinction be-
tween these motion scenarios becomes immaterial. However,
their detailed dynamical behavior far from equilibrium might
be different and this issue deserves further analytical and
numerical exploration.

To our current knowledge, there is no Langevin-type rep-
resentation of a topological process and vice versa, even
though an invariant density is common for both. Nonethe-
less, we will demonstrate that by starting from a common
initial probability density, the two �Langevin and dynamical
semigroup� motion scenarios end up at a common invariant
density.

Neither OUC process nor its topological counterpart are
confined. For the Cauchy density, the second moment is non-
existent. We shall verify the outcome of the OUC discussion
for Cauchy-type processes whose invariant densities admit
the second moment due to confinement. Let us consider the
quadratic Cauchy pdf:

���x� =
2

�

1

�1 + x2�2 . �22�

Now, let us proceed in reverse order departing from Eq.
�22�, so that �1 /�2����

1/2= �1 /�� / �1+x2� is actually Cauchy
pdf. We consider f�x�=��

1/2 as the initial data for the free
Cauchy evolution �t f =����f . This takes f�x� into the form

FIG. 1. �Color online� The coordinate dependence of potentials
V�x�: Eq. �21� for different � �main left panel�, Eq. �24� �inset to
left panel�, and Eq. �35� for different 
 �right panel�.

LÉVY FLIGHTS IN CONFINING POTENTIALS PHYSICAL REVIEW E 80, 031113 �2009�

031113-5



f�x,t� =� 2

�

1 + �t

�1 + �t�2 + x2 . �23�

Since ����f =−limt→0 �t f we end up with

V�x� =
limt→0 �t f

f
�x� = �

x2 − 1

x2 + 1
. �24�

The shape of this potential is shown in Fig. 1 �inset to upper
panel�. A minimum −� is achieved at x=0, V=0 occurs for
x= �1, a maximum +� is reached at x→ ��.

The potential is bounded both from below and above and
hence can trivially be made non-negative �add ��. This
means that the potential Eq. �24� is fully compatible with the
general construction of Ref. �11�. This topological process is
generated by Cauchy generator plus a potential function, see
Ref. �11�, is of the jump type and can be obtained as an �
→0 limit of a step process with a minimal step size �.

Note, that in Ref. �11� no explicit example of the confin-
ing potential V has been proposed. Equations �21� and �24�
provide such examples, which, to our knowledge, have never
been exploited in the literature.

At this point, let us make a guess that the quadratic
Cauchy pdf actually stands for an invariant pdf of the “nor-
mal” Langevin-based fractional Fokker-Planck Eq. �18� with
a drift of the form �1�. Accordingly we should have �t��=0
=−��b���−������ and therefore the admissible drift func-
tion, if any, may be deduced by means of an indefinite inte-
gral:

b�x� = −
�

���x�� ��������x�dx . �25�

For quadratic Cauchy pdf Eq. �22� the explicit form of b�x�
Eq. �25� reads

b�x� = −
�x

8
�x2 + 3� . �26�

Thus, there exists the Langevin process whose invariant pdf
is shared with a corresponding topological process. In the
near-equilibrium regime a dynamical distinction between the
pertinent processes becomes immaterial. In other words, if
we wish to deal with the Langevin process associated with

the quadratic Cauchy density Eq. �22�, the proper drift form
is given in Eq. �26�.

To analyze numerically the above apparent discord be-
tween Langevin-driven and topological processes, we use the
invariant pdf Eq. �22�, having drift Eq. �26� and Feynman-
Kac potential Eq. �24�. We have chosen this invariant pdf as
it has a finite variance, which permits us to capture the de-
tails of near-equilibrium, initial, and intermediate stages of
time evolution.

For numerical solution we use simple Euler scheme for
time derivatives and numerical integration �more specifically,
we calculate Cauchy principal value of integrals� on the each
Euler time step for evaluation of fractional derivative ���.
The initial state corresponds to a particle localized at x=0,
corresponding to the minima of both potential, derived from
the drift Eq. �26� and Feynman-Kac potential Eq. �24�,
��x , t=0�=��x�. The solutions ��x , t� of the Eqs. �18�
�Langevin-type process� and Eq. �17� �topological process�
are reported in Fig. 2 �left and middle panels, respectively�.

It is seen that topological diffusion process needs more
time to achieve the invariant pdf, appears to be slowed down
as compared to the Langevin scenario. This is illustrated in
Fig. 2 �right panel�, where the time evolution of variances for
both processes have been plotted. The time evolution occurs
from zero variance of � function to asymptotic variance
�X2�t→���=1 of the pdf Eq. �22�. It is seen, that variance
for Langevin-type process achieves the asymptotic value at
�dimensionless� time t�0.5, while for topological diffusion
this time t�2.

C. Confined Cauchy family

Now we consider a broader class of pdf’s related to the
Cauchy noise. Any continuous pdf � can be associated with
Shannon entropy S���=−�� ln �dx �25�. If an expectation
value �ln�1+x2�� is fixed, the maximum entropy probability
function belongs to a one-parameter family

���x� =
���

���� − 1/2�
1

�1 + x2� �27�

where �1 /2 �25�.
Cauchy distribution is a special case of the above �� that

corresponds to =1. The density Eq. �22� is the second, 

FIG. 2. �Color online� Time evolution of pdf’s ��x , t� for topological �left panel, �=1� and Langevin-type �middle panel, 
=1, m=1�
processes. The common equilibrium pdf �� Eq. �22� is also shown. Right panel reports the time-dependent variance X2�t� for Langevin-type
�solid line� and topological �dashed line� processes. Points correspond to numerical calculation, lines are guides for the eyes.
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=2, member of the —integer hierarchy �we assume that
�=1�.

Our tentative analysis shows that for integer and half-
integer , the invariant pdf Eq. �27� admits V�x�, which fits
the restrictions of Corollary 2 in Ref. �11�. The question
about arbitrary  is still under investigation.

For each specific function V�x�, the resulting Markov
jump-type stochastic process, determined by the Cauchy
generator plus a suitable potential function, appears to be
unique. Here we present only one specific example, namely
we consider

���x� =
16

5�

1

�1 + x2�4 . �28�

Substitution of Eq. �28� into Eq. �15� with respect to defi-
nition Eq. �12� yields �24� the following expression for the
Feynman-Kac �semigroup� potential

V�x� =
�

2

x4 + 6x2 − 3

1 + x2 . �29�

The potential is bounded from below, its minimum at x
=0 equals −3� /2. For large values of �x�, the potential be-
haves as ��� /2�x2, i.e., demonstrates a harmonic behavior.

Apart from the unboundedness of V�x� from above, this
potential obeys the minimal requirements of Corollary 2 in
Ref. �11�: can be made positive �add a suitable constant�, is
locally bounded �e.g., is bounded on each compact set� and is
measurable �e.g., can be approximated with arbitrary preci-
sion by step functions sequences�. The Cauchy generator
plus the potential Eq. �29� determine uniquely an associated
Markov process of the jump type and its step process ap-
proximations.

Having the density Eq. �28�, we can readily address the
problem �vi� of Sec. III C. Namely, inserting Eq. �28� to Eq.
�25�, we obtain

b�x� = −
�x

16
�5x6 + 21x4 + 35x2 + 35� . �30�

This function shows a linear friction b�−x for small x and a
strong taming behavior b�−x7 for large x.

Let us finally consider a bimodal pdf �see, e.g., Ref. �20��

���x� =

3

�

1

x4 − 
2x2 + 
4 , �31�

which is a solution of so-called quartic Cauchy oscillator. As
a form of the �confining� potential V�x��x4 is known for that
pdf, we can check the correctness of the procedure Eq. �25�
of deriving a drift �and hence the potential V�x� in Langevin
scenario� for this pdf. The application of operator Eq. �12� to
function �31� yields

������x� =
�x2


3

x4 + 
2x2 − 3
4

�x4 − 
2x2 + 
4�2 , �32�

which after integration over x and division over ���x� Eq.
�31� yields

b�x� = − �
x3


3 , �33�

V�x� = −� b�x�dx =
�

4
3x4, �34�

which is exactly the form of the potential for quartic Cauchy
oscillator. The expression Eq. �31� can also be used to cal-
culate the “topological” potential V�x�

V�x� =
�

�
�x4 − 
2x2 + 
4�

−�

� dy

y2  1
��x + y�4 − 
2�x + y�2 + 
4

−
1

�x4 − 
2x2 + 
4� . �35�

Since an analytic outcome has proved not to be tractable, we
have reiterated to numerics. The result of numerical calcula-
tion of the function �35� is reported in Fig. 1 �lower panel�
for different 
. It is seen that this potential is also bounded
from below and above, can be made non-negative and have
all properties imposed by Corollary 2 of Ref. �11�.

V. CONCLUSIONS

Explicitly solvable models are scarce in theoretical stud-
ies of Lévy flights, especially in the presence of external
potentials and/or external conservative forces. Therefore, our
major task was to find novel analytically tractable examples
that would shed some light on apparent discrepancies be-
tween dynamical patterns of behavior associated with two
different fractional transport equations that are met in the
literature on Lévy flights.

Although the predominant part of this research is devoted
to the standard Langevin modeling, we have demonstrated
that so-called topological Lévy processes form a subclass of
solutions to the Schrödinger boundary data problem. The
pertinent dynamical behavior stems form a suitable Lévy-
Schrödinger semigroup. The crucial role of the involved
Feynman-Kac potential has been identified. We have explic-
itly derived these potential functions in a number of cases.

The major gain of above observations is that a mathemati-
cal theory of Ref. �11� tells one what are the necessary func-
tional properties of admissible Feynman-Kac potentials.
Their proper choice makes a topological Lévy process a
well-behaved mathematical construction, with a well-defined
Markovian dynamics and stationary pdf.

Our focus was upon confinement mechanisms that tame
Lévy flights to the extent that second moments of their prob-
ability densities exist. We have shown that the dynamical
behavior of both above classes of processes are close to each
other in the near-equilibrium regime and admit common �for
both classes� stationary pdf. This pdf, in turn, determines a
functional form of the aforementioned �semigroup defining�
potential function.

We have generalized the reverse engineering �targeted
stochasticity� problem of Ref. �23� beyond the original Lévy-
Langevin processes setting. We have demonstrated that
within the targeted stochasticity framework, the concept of
Lévy flights in confining potentials is not limited to the stan-
dard Langevin scenario. The Lévy-Schrödinger semigroup
explicitly involves confining potentials, but with no obvious
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link to a Langevin representation. Our version of the reverse
engineering problem amounts to reconstructing from a given
�target� stationary density the potential functions that either:
�i� define the forward drift of the Langevin process, or �ii�
enter the Schrödinger-type Hamiltonian expression in the
semigroup dynamics. Both dynamical scenarios are expected
to yield the same asymptotic outcome, i.e., the preselected
target pdf.

We note that a departure point for our investigation was a
familiar transformation of the Fokker-Planck operator into its
Hermitian �Schrödinger type� counterpart, undoubtedly valid
in the Gaussian case. The Fokker-Planck and the correspond-
ing parabolic equation �plus a compatibility condition� essen-
tially describe the same random dynamics. An analogous
transformation is nonexistent for non-Gaussian processes.
Two fractional transport equations discussed in the present
paper are inequivalent in the non-Gaussian case so that the
semigroup and the Langevin dynamics with the Lévy driver

�e.g., noise� refer to different random processes. The reverse
engineering problem allowed us to demonstrate that those
two processes may nevertheless share the same target pdf
and close near equilibrium behavior.

Since the Schrödinger boundary data problem allows for a
construction of an interpolating Markovian process between
any two a priori prescribed probability densities, it is of
interest to fix an initial pdf and choose an invariant pdf as an
asymptotic �terminal� datum. That is why in the present pa-
per we have given a detailed comparison of a temporal be-
havior of the Langevin-based and topological process, both
sharing the same invariant pdf.
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